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Benefit to the program 

• Program goals being addressed: 

– Develop technologies to demonstrate that 99 percent of 

injected CO2 remains in the injection zones. 

• Project benefit:  

– This project is developing system modeling capabilities 

that can be used to address challenges associated with 

infrastructure development, integration, permanence & 

carbon storage options. The project is also developing 

science basis that can be used to assess impacts of CO2 

leakage in shallow aquifers. This technology contributes 

to the Carbon Storage Program’s effort of ensuring 99 

percent CO2 storage permanence in the injection zone(s).  
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Project Overview:   
Goals and Objectives 

 

1. Develop and apply system modeling capabilities applicable 

to CCS storage operations: 

• Develop capabilities in LANL’s CO2-PENS system-model for a 

range of field site applications 

• Develop capabilities to assess optimized CCS infrastructure 

• Develop capabilities that can be used to evaluate water production 

and treatment for beneficial reuse. 

2. Characterize multi-phase CO2 flow in groundwater aquifers 

through an integrated experimental-simulation approach 
 



Technical Status 



Developing an effective CCS technology deployment strategy 

for CO2 management requires consideration of various 

coupled systems 
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• Components of the CCS technology, namely, CO2 sources, transportation 

pipelines and storage reservoirs will interact and impact performance of each 

other 

– Suitable availability of geologic storage options and their long-term performance will 

influence siting, size and operations of power plants (or other CO2 sources) 

– Infrastructure needed at a geologic storage site and effective site management will 

be influenced by the amount of CO2 to be sequestered 

– Development of an efficient pipeline network will depend on the distribution of 

sources and storage sites 

• Predicting the performance of the integrated CCS operation and assessing its 

effectiveness can be done with a system modeling approach 



A system model for geologic storage encompasses all 

components at storage site 



At LANL we have developed the first-ever system level model, 

CO2-PENS, for predicting long-term performance of a geologic 

sequestration reservoir 
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• CO2-PENS (CO2-Prediction of Engineered Natural Sites) is a modular, 

systems level model developed to perform comprehensive analysis of 

CO2 sequestration sites 

– Developed since 2005 with DOE funding. 

– Currently being applied in NRAP, SWRP, BSCSP, US-China Consortium 

• CO2-PENS: 

– Developed for assessment of long-term performance of specific sites. 
 Provide input for various criteria: effectiveness (capacity & injectivity), HSE risks, economics, 

public policy 

– Simulate CO2 transport & migration from sources to storage & beyond. 

– Supports a science based quantitative risk assessment. 

– System level approach that integrates modules that are governed by 

different physics and are described by analytical/semi-analytical/detailed 

numerical models.  



Technical approach 

9 

• Integrate CO2-PENS with LANL’s SimCCS model for optimization of 

infrastructure deployment 

– Enhance SimCCS capabilities to address time-dependence, 

incorporation of uncertainty and risk 

• Develop new capabilities in CO2-PENS to enhance its applicability: 

– Evaluate water production, treatment for beneficial reuse and 

disposal to minimize risks due to pressure increase 

– New modules for application to CO2-EOR sites 

• Demonstrate applicability of CO2-PENS through field applications  

• Fill-in the knowledge gap related to underlying science base: 

– Current understanding of CO2 exsolution and multi-phase fluid flow 

in shallow aquifers 

 



• In order to develop an efficient and robust CCS infrastructure as the 

scale of CCS deployment grows we will have to simultaneously and 

optimally decide: 
– Which CO2 sources will capture [or emit ] CO2 and how much CO2 to capture 

at selected sources 

– Which geological reservoirs to open, how much CO2 to inject into each 

reservoir while taking into account CO2 storage effectiveness 

– Where to construct pipeline networks, what diameter pipeline to build and 

how to efficiently distribute CO2 amongst supply/demands 
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Optimization of CCS infrastructure deployment 



• An integrated modeling approach that while optimizing the transportation 

network it also takes into account the storage reservoir effectiveness 

– Our overall approach will be focused on integrating LANL’s SimCCS 

optimization model with CO2-PENS 

 SimCCS is a comprehensive CCS infrastructure model for optimization of 

CO2 capture, transportation and storage: uses realistic, networked 

pipeline system 

– Use CO2-PENS to inform SimCCS 

CO2-PENS provides information on number of wells, injectivity, 

maximum reservoir capacity, water production to maintain pressure at 

different sites 

 SimCCS updated to take into account reservoir related information 

– Use CCS infrastructure results to inform CO2-PENS 

 Identify potential, feasible storage sites 
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Optimization of CCS infrastructure deployment 



Results: Spatial evolution of infrastructure over time 
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• Objectives 

– Minimize risks associated with pressure increase by pressure management through 

water production 

– Develop system modeling capabilities for assessing effective technologies and costs 

related to extraction and treatment of water for beneficial use  

• Approach 

– Develop system modules for doing assessment while taking into account complexities 

– Apply model using real-world data from literature and from accepted water treatment 

practices worldwide 

– Integrate with CO2-PENS model 

• Challenges 

– Water types and sources are very different and more complex chemically than typical 

waters treated for municipal and industrial use 

– Obtaining complete cost data is difficult. International sources of data are very 

important. 

– Accounting for all costs and ancillary benefits is very specific to the capture/storage 

technology realm and is related to, but not the same as, typical treatment and use 

scenarios 
13 

Water production and treatment for 

beneficial reuse 
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Model Structure, Pretreatment and 

Treatment Choices 
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Concentrate Disposal Options and Costs 
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Pretreatment and concentrate disposal 
effects on costs 

As modeled, pretreatment scatters RO (±25%) 
and NF (±50%) ranges more than for thermal 
methods (±5%), probably because of the 
assumption that more pretreatment is used for 
membrane processes.  

Disposal costs also scatter data and increase 
costs, considerably for some methods such as 
Class V wells. 
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• Objectives 

– Demonstrate application of CO2-PENS to field sites for 

site feasibility and long-term risks 

• Approach 

– Apply CO2-PENS to specific sites that are currently under 

various studies (characterization or field demonstration)  

– Update CO2-PENS capabilities to account for site-

specific issues while taking into account complexities 

– Site feasibility includes assessment of long term storage 

capacity, injectivity and risks 

• Ongoing application 

– Craig site project led by University of Utah 
17 

CO2-PENS site application 



• The project aims at regional characterization 

of multiple potential CO2 sequestration target 

formations in Rocky Mountain region 

– Three prominent zones including Dakota 

sandstone, Entrada sandstone and Weber 
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Rocky Mountain Site Characterization 

Project: Craig site 



• Approach: 

– Develop CO2-PENS model for the Craig site (site-specific) and Colorado 

Plateau (regional) 

• Incorporate regional geologic characterization information, site-specific 

details 

• Potential failure pathways (wells/seals): determine probability of failures 

based on available data 

– Model for CO2 sequestration reservoirs: Utilize results of numerical 

modeling studies: changes in reservoir pressure and saturations 

– CO2-PENS calculations will provide results related to overall risks related 

to various criteria: e.g. risks of leakage of CO2/brine 

• Status: 

– Received results of numerical reservoir simulations from Univ. of Utah. 

– In process of collecting additional data (shallow formations, well/fault data) 

– In process of performing calculations on a regional basis and site-specific risks 
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CO2-PENS application 



• Objectives 

– Characterize the nature of CO2-water flow in shallow aquifer 

subsequent to potential leakage 

– Start filling knowledge gaps: 

• Investigate the effect of heterogeneity on the processes of CO2 gas 

exsolution, expansion and migration in large systems 

• Determine how various factors affect the spatiotemporal evolution 

of CO2 gas in large systems 

• Develop numerical tools for broader applications 

• Demonstrate real-world applications and upscaling effects through 

intermediate scale two-dimensional experiments 
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Characterization of CO2-water multi-phase flow 



• Approach 

– Integrated experimental and modeling approach 

– Collaboration with Prof. Tissa Illangasekare at Colorado School of 

Mines (CSM) 

– Unique, world-class experimental facility at CSM including sand 

column and two-dimensional tanks 

– Experiments under controlled conditions where CO2-dissolved water 

is injected through columns/tanks under different conditions 

– Experimental results used to develop models in LANL’s FEHM 

simulator  
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Characterization of CO2-water multi-phase flow 
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Characterization of CO2-water multi-phase flow 

One dimensional sand-column experiments 
Column 

configuration 

Multiple sand-

packings 

Automated instrumentation: 

- 12 saturation, EC and air 

temperature sensors  

- 14 water pressure tensiometers 

- 2 soil temperature sensors 

- 1 electronic balance 

- 1 gas flow meter 

- 1 pH meter 

Various injected CO2 concentrations 

and injection rates 

 



Example experimental results 

The final distribution of gas in the column 

depends on the saturation pressure 
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• The spatiotemporal pattern of CO2 gas exsolution is relatively insensitive 

to injection rate 

• Exsolution proceeds more slowly in fine homogeneous systems than 

coarse when the water is not supersaturated 

• The vertical extent of the gas phase is directly proportional to the 

saturation pressure 

• The higher the injected CO2 concentration, the sooner and quicker the 

exsolution 

• Heterogeneous interfaces trigger exsolution when they exist in the 

portion of the column where the injected water is supersaturated 

• Gas accumulates under interfaces from coarse to fine sand 

• Preferential flow paths occur more often through fine sand than coarse 
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Results of 1-D column experiments 



Numerical Modeling with LANL’s FEHM simulator 

Injected water saturation 

pressure: 50 KPa 

Matching experimental observations needed incorporation 

of 35% critical gas phase saturation 



Accomplishments to Date 

– CO2-PENS, first-ever system model for CCS studies: 

• Developed capabilities for application to site-specific complex 

geologies 

– Integrated SimCCS (CO2 pipeline infrastructure optimization model) 

with CO2-PENS (System model for geologic CO2 storage): First-ever 

modeling approach of such kind. 

– Applied integrated SimCCS & CO2-PENS modeling capability to 

multiple sets of field data. 

– Developed a comprehensive system module for assessment of 

water production to minimize risks and treatment for beneficial 

reuse. 

– Completed column experiments to characterize multi-phase CO2-

water flow and developed numerical models for the experiments: 

• Experimental observations are filling-in needs. 
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Future Plans 

• Complete developments in SimCCS to account for site-specific risks 

• Complete application of CO2-PENS to Craig site 

• Develop capabilities in CO2-PENS and apply to CO2 EOR site 

applications 

– Oil-specific issues 

• System model for water treatment: 

– Expand cost database including factors such as organic 

pretreatments and add benefits 

– Integration with NATCARB for water composition 

– Develop an independent tool for assessment of water production 

and treatment 

• Complete 2-D tank experiments on shallow aquifer multi-phase flow 

characterization and numerical models 
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Appendix 
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Organization Chart 

• Project team 
– PI: Rajesh Pawar  

– Program Manager: Melissa Fox 

– Team Members: 

• Richard Middleton: CCS Infrastructure optimization 

• Jeri Sullivan: Water treatment system modeling 

• Shaoping Chu: Water treatment system modeling 

• Hari Viswanathan: CO2-PENS site application 

• Prof. Tissa Illangasekare (Colorado School of 
Mines): CO2 release experimental characterization 
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Gantt Chart 
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and storage, perform outreach education on these issues, and to disseminate water research performed within the Capture program and the Partnerships. 


